Automatic labeling of EEG electrodes using combinatorial optimization
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Abstract— An important issue in electroencephalography
(EEG) experiments is to measure accurately the three di-
mensional (3D) positions of electrodes. We propose a system
where these positions are automatically estimated from several
images using computer vision techniques. Yet, only a set of
undifferentiated points are recovered this way and remains
the problem of labeling them, i.e. of finding which electrode
corresponds to each point. This paper proposes a fast and
robust solution to this latter problem based on combinatorial
optimization. We design a specific energy that we minimize with
a modified version of the Loopy Belief Propagation algorithm.
Experiments on real data show that, with our method, a manual
labeling of two or three electrodes only is sufficient to get the
complete labeling of a 64 electrodes cap in less than 10 seconds.
However, it is shown to be robust to missing electrodes in the
reconstructed data.

I. INTRODUCTION

Electroencephalography (EEG) is a widely used method
for both clinical and research purposes. Conventionally, EEG
readings were directly used to investigate brain activity from
the evolution of the topographies on the scalp. Nowadays, it
is also possible to reconstruct the brain sources that gave rise
to such measurements, solving a so-called inverse problem.
To this purpose, it is necessary to find the electrode positions
and to relate them to the head geometry recovered from an
anatomic MRI. Current techniques to do so are slow, tedious,
error prone (they require to acquire each of the electrodes
in a given order with a device providing 3D coordinates[1])
and/or quite expensive (a specialized system of cameras is
used to track and label the electrodes[2]). Our goal is to
provide a cheap and easy system for electrode localization
based on computer vision techniques.

In modern EEG systems, the electrodes (64, 128 or even
256) are organized on a cap that is placed on the head.
Our system takes as inputs multiple pictures of the head
wearing the cap from various positions. As a preliminary
step, electrodes are localized and their 3D positions are com-
puted from the images by self-calibration (a technique that
recovers the cameras’ positions from the image information
[3]) and triangulation. These are standard techniques that can
provide 3D point coordinates with a quite good accuracy.
There remains the problem of electrode identification which
labels each 3D position with the name of the corresponding
electrode. Finding a solution to this last problem is the focus
of this paper. Note, that a good labeling software can also
improve current systems by removing acquisition constraints
(such as the recording of the electrodes in a given order) and
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Fig. 1. Projection of an object onto two cameras’ planes. The 3D position
of point M can be recovered from its two projections m; and m;

by providing better user interfaces.

We propose a method that recovers this labeling from just
a few (two or three) manually annotated electrodes. The only
prior is a reference, subject independent, 3D model of the
cap. Our framework is based on combinatorial optimization
(namely on an extension of the Loopy Belief Propagation
algorithm[4]) and is robust to soft deformations of the cap
caused both by sliding effects and by the variability in
subjects’ head geometry, as well as to missing electrodes
in the 3D reconstruction.

II. RECONSTRUCTION OF THE ELECTRODES POSITIONS

While the problem of retrieving the position of the elec-
trodes is not tackled by this article, we give a brief insight
of methods that we use to perform this task.

It is impossible to find the 3D position of a point M from
one image m; of it, taken by a single camera C;. Yet, if two
images m; and m; of M are known, as well as the positions
from where the pictures where taken, it is possible to recover
M (figure 1). Starting from this stereovision principle, the
computer vision community had to face two major problems:
(1) recovering the camera positions (the calibration task) and
(ii) associating the corresponding 2D points (the matching
problem). State of the art methods use a self-calibration
procedure, and are able, from enough overlapping images, to
solve these two problems all-together [3]. We are currently
finalizing such a system and plan to make freely available to
the EEG community. This system recovers the 3D positions
of the electrodes from a reduced number of digital pictures.

III. PROBLEM DEFINITION

The inputs of our method consist of:



« atemplate EEG cap model providing labeled electrodes,
along with their 3D positions (in fact, as we will explain
further, an important feature of our method is that only
the distances between close electrodes are used). £ will
denote the set of labels (e.g. L = {Fpz,0z,---}),
and C = {C}, | € L} will be their corresponding 3D
positions. C; could be for example the average position
of electrode ! among a variety of prior measures.
However, in our experiments, it was just estimated on
one reference acquisition.

o the measured 3D positions of the electrodes to label,
obtained by 3D reconstruction from images. We will
denote by M = {M;, i € [1..n]} these n 3D points.

The output will be a labeling of the electrodes, i.e. a mapping
¢ from [1..n] to L. In practice, ¢ must be an injection: two
candidate electrodes should not share the same label. When
n = |L|, this constraint leads to ¢ being one-to-one, but in
general this allows for missing electrodes in the measured
set (i.e. n < |L|).

IV. MOTIVATION

In this section, we discuss other possible approaches for
the electrode labeling problem. As it will be detailed in
section VII, we have tried some of these methods without any
success. This will motivate our energy-based combinatorial
approach.

A simple method could consist of a 3D registration step,
followed by a nearest-neighbor labeling.

Let T be a transformation that sends M into the spatial
referential of C. A straight labeling could be:

(i) = argmin d(Cy, T'(M;))
where d(A, B) denotes the Euclidean distance between
points A and B.

Actually, we first tested two direct ways of obtaining an

affine registration 7":

o moment-based affine registration: in this case, we com-
puted first and second order moments of the sets of
points M and C and choose 7" as an affine transforma-
tion which superimposes these moments.

o 4 points manual registration: here, we manually labeled
4 particular electrodes in M and took for 7' the affine
transformation which exactly sends these 4 electrodes
to the corresponding positions in C.

As explained in section VII, we observed that these two
approaches give very bad average results. One could argue
that this might be caused by the quality of the registration.
A solution could be to use more optimal affine registration
methods, like Iterative Closest Points[6], [7]. Yet, a close
look at what caused bad labeling in our experiments, reveals
that this would not improve the results. The main reasons are
indeed that (i) the subject whose EEG has to be labeled does
not have the same head measurements than the template, and
moreover that (ii) the cap is a soft structure that undergoes
non-affine deformations from one experiment to an another.

Fig. 2. Complete pipeline : we obtain 3D positions M (bottom left) by
reconstruction from several (usually 10) pictures (top left). A graph G then
is constructed from these positions (bottom right). Considering a template
cap and associated positions C' (top right), we label the measured electrodes
by estimating ¢* = arg min(U(¢)). In this example, ¢ (i) = k, ¢(j) = 1.

It is clear that only a non-affine registration could send
M close to C. However, modeling the problem in term
of space deformation is not suitable. For instance, a Thin-
Plate Spline[8], [9] based algorithm would not be suitable.
Actually, a more suitable framework could be a deformable
shape matching one. We could see our problem as a shape
registration one, based on shape deformation and intrinsic
shape properties[10], rather than on deforming the ambient
space in order to make the shapes match. Because of the
topology of the electrodes on the cap, relations between
points are of crucial importance. In that sense, our problem
is close to the one investigated by Coughlan et al. [11],
[12], which they solve recovering both deformations and
soft correspondences between two shapes. Yet, in our case,
we see two main differences: (i) labeling, rather than shape
matching, is the key issue, and (ii) enforcing relational con-
straints between points are more important than regularizing
deformations. For these reasons, we propose a method based
on optimal labeling for which the only (soft) constraints are
the distances between nearby points, without modeling any
deformation.

In the remaining of the article, we first state our model
and the associated energy; we then discuss our choice for
an energy minimization algorithm. Finally, we validate our
method giving qualitative and quantitative results on real
experiments.

V. PROPOSED FRAMEWORK

The complete pipeline of our system is depicted figure
2. As we already explained, we do not consider here the
3D reconstruction step, but only the labeling one. From
the measured data M, we construct an undirected graph
G = (V,E), where V = [1..n] is the set of vertices and
E a certain set of edges which codes the relations between
nearby electrodes. As it will become clear in the following,
the choice of E will tune the “rigidity” of the set of points
M. Practically, the symmetric k-nearest neighbors or all the
neighbors closer than a certain typical distance, are two



valid choices. Given an edge e = (i,j) € F fori € V
and j € V, we denote by d;; = d(M;, M;) the distance
between points M; and M; in the measured data and by
dij = d(Cyiy, Cg(s)) the reference distance between the
electrodes ¢(i) and ¢(j) in the model. In order to preserve
in a soft way the local structure of the cap, we propose to

simply minimize the following energy:

U@)= Y pldij,dij) (1)
(i,5)€E
where p is a cost-function which penalizes differences be-
tween the observed and template distances. The injection
property of the mapping is not explicitly enforced in our
model, but we choose the function p such that non injective
solutions are strongly penalized.

VI. ENERGY MINIMIZATION

Following the classical framework of Markov Random
Fields, this energy minimization problem can be rewritten
as solving a Maximum A Posteriori (MAP) problem for a
Gibbs distribution over G [13], [14], [15].

Several methods exist for solving this kind of problem (see
[15], [18], [19]). We opted for a widely spread algorithm,
namely Loopy Belief Propagation (LBP) ([4]). Briefly, it
consists in propagating information through the edges of
the graph: each node 7 sends messages to its neighbors
k, measuring the estimated label of k from its own point
of view. Messages are passed between nodes iteratively
until a convergence criterion is satisfied. This algorithm is
neither guaranteed to converge nor to converge to an optimal
solution. However, it behaves well in a large variety of early
vision problems. Empirical and theoretical convergence of
this family of methods were studied for instance in [21],
[22].

VII. EXPERIMENTS

We used 6 sets of 63 electrodes (one of the 64 electrodes
is not considered in our experiments). Each set consists of
63 estimated three dimensional points, acquired on different
subjects with the same EEG cap and manually labeled. To
test our algorithm as extensively as possible, we ran the
algorithm on each set, taking successively each of the other
sets as a reference. We hence simulated 30 different pairs
(M, C). At least one electrode in M was manually labeled
(see further).

E was chosen the following way : we first estimated a
typical neighbor distance by computing the maximum of
the nearest neighbor distance for all electrodes in M, and
then considered as belonging to F, every pair of distinct
electrodes within less than three times this distance. In order
to accelerate and enforce convergence, we used the following
technical tricks:

o we added a classical momentum term ([21])

« denoting by V; the subset of V' of the manually labeled
electrodes, we added the set of edges Vy x V to E,
allowing accurate information to propagate quickly in
the graph.

Different experiments where carried out. First, the prior
consisted in manually labeling electrodes F'pz, Oz, and T'8.
In that case, our method recovers all the electrodes, which
was, as expected, not at all the case with an affine regis-
tration+nearest neighbor approach (see figure 3). Actually,
we observed that labeling (Oz,T8) seems sufficient. Yet,
without any further data, we do not consider that labeling
two electrodes only is reliable. Figure 4 shows a result on
a case where affine registration does not work and the final
3D reconstruction with our method.

To demonstrate the robustness of our algorithm, we also
tested hundreds of other conditions, in which 1, 2 or 3
randomly chosen electrodes were "manually” labeled. Non-
convergence was only observed for non reasonable choices of
"manually" labeled electrodes: indeed, if they are chosen on
the sagittal medium line, there is an indetermination due to
the left-right symmetry of the cap. This does not occur when
the electrodes are set by a human operator. The classification
error rates are low (see figure 3 again) but not negligible. This
makes us plead for a manual labeling of two or three fixed
and easy to identify electrodes, e.g. (Fpz,0z,T8).

Finally, we also successfully tested cases for which n <
|£], i.e. when some electrodes are missing : if a few
electrodes were forgotten in the 3D reconstruction process,
our algorithm should still be able to label the detected ones.
This should allow us to find which electrodes were forgotten,
to compute their approximate 3D position from the template
cap model and to use this information to detect them back in
the pictures. To carry our experiments, we removed randomly
from 1 to 10 electrodes in the data sets to be labeled.
Labeling was performed using the (F'pz,Oz,T8) prior as
explained above. Results are synthesized figure 3.

’ \ NC \ misclassified labels ‘

Affine registration

- Moment based - 48.7%
- 4 manual points - 21.3%
Our method

- (Fpz,0z,T8) given 0% 0%
- (02,T8) given 0% 0%
- 3 random elect. given | 0% 0.03%
- 2 random elect. given | 0.3% 0.2%
- 1 random elect. given | 4.2% 3.7%
Our method with missing electrodes

- 1 missing elect. 0% 0%
- 2 missing elect. 0% 0%
- 3 missing elect. 0% 0.01%
- 10 missing elect. 0% 1.11%

Fig. 3. Classification errors. NC' gives the percentage of instances of the
problem for which Loopy Belief Propagation did not converge. Misclassified
labels percentages are estimated only when convergence occurs.

VIII. DISCUSSION

Experiments show that our framework leads to fast, accu-
rate and robust labeling on a variety of data sets. We consider
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Fig. 4. A sample result. M is in red and C in green. The edges describe
the obtained associations between the measured and model electrodes. Top
left: 63 estimated 3D electrodes positions. Top right: reference. Center left:
subset of a labeling with the moment based algorithm; C4 is wrongly labeled
CP4, and F1 is labeled F3 (not shown). In this case, the labeling is not even
injective. Center right: a subset of correct correspondences retrieved by our
algorithm. Bottom : full labeling retrieved by our algorithm, superimposed
with anatomical MRI.

providing on the WEB in a near future a complete pipeline
including our algorithm - ranging from 3D reconstruction
of electrodes from images to their labeling. Such a system
would only require a standard digital camera and would
imply minimal user interaction (manually labeling three
electrodes).

Note that the flexibility of our M RF' formulation allows
different priors. We plan for instance to use the color of
electrodes on the images as a further prior for labeling.
This could lead to a fully automated system, where no user
interaction would be required.
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